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Abstract
We study a credit-risk model which captures effects of economic interactions
on a firm’s default probability. Economic interactions are represented as
a functionally defined graph, and the existence of both cooperative and
competitive business relations is taken into account. We provide an analytic
solution of the model in a limit where the number of business relations of each
company is large, but the overall fraction of the economy with which a given
company interacts may be small. While the effects of economic interactions
are relatively weak in typical (most probable) scenarios, they are pronounced
in situations of economic stress, and thus lead to a substantial fattening of
the tails of loss distributions in large loan portfolios. This manifests itself
in a pronounced enhancement of the value at risk computed for interacting
economies in comparison with their non-interacting counterparts.

PACS numbers: 02.50.−r, 05.40.−a, 89.65.Gh, 89.75.Da

1. Introduction

The proper quantification of credit risk poses a complex mix of problems, as important credit-
risk parameters, such as default rates, recovery rates or exposures, fluctuate substantially in
time even on a high portfolio aggregation level [1]. This results in large unexpected losses
in loan portfolios, for which banks are required to hold equity capital as a loss buffer. To
determine the appropriate level of equity capital for banks’ loan portfolios is one main focus
of the regulatory consultive process known as Basel II [2]. Accordingly, credit-risk modelling
has been a focus of intense research in recent years [3–21], although considering the risk
premium when pricing interest rates go back some time [22].

The assessment of credit ratings by assessment agencies such as Moody’s and S&P
allows some statistical assessment of the credit quality of individual offerings or particular
companies. However, it is clearly essential when considering the risk of a basket of loans that
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the correlations between the members of the portfolio are taken into account. One systematic
approach is to replace the number of firms in a portfolio with an effective number of independent
firms [24]. By boosting the contribution of each firm to keep the mean loss constant, this
introduces a larger variance of losses, in an attempt to capture the risk caused by correlations
between firms. J P Morgan’s CreditMetrics approach [3] (see also Credit Suisse Financial
Products’ CreditRisk+ [4] and [19] for a detailed comparison of the two) tries to model the
correlations between firms in credit quality using the observable correlations in equity value
of the firms. An intuitively appealing approach is to assume that the default intensity depends
on some set of macroscopic economic factors (e.g., interest rates, growth rates, oil prices, etc),
the so-called reduced form model [7, 8]. Thus, the default rates of different firms are coupled
via some limited number of factors, but given the factors the default rates are independent. In
structural models [22, 23], the dependence on macro-economic factors is understood in terms
of correlations in the dynamics of asset returns of different companies, leading to correlations
in default rates via correlated dynamics of returns. More involved approaches have modelled
interactions between firms in the wider economy by introducing changes to a firm’s default
intensity upon the default of another firm [6] or via a copula function [10]. The quantification
of these correlations via simulations is discussed in [14].

The main purpose of the present contribution is specifically to expand upon recent
modelling and analytic descriptions of the influence of counter-party risk [6, 9, 11, 13,
15–18, 21]. Counter-party risk addresses the fact that a given firm’s economic health is
strongly influenced by the performance within the network of companies with which it has
direct economic interactions, its partners. We understand the notions of firm and economic
partner in a very wide sense: a firm could be any economic entity, a manufacturer, a service
provider, a trader of goods or services, even an individual. We shall often use the generic
term ‘node’ to designate these entities. Two firms are partners if the state of one has a
material (not necessarily symmetric) effect upon the other, e.g. one is the supplier of the other,
performs outsourced services, there exists substantial loans or other financial commitments
between the two or they compete in the same market. Specifically, a defaulting firm within
this network of counter-parties will affect a company’s own default probability—reducing it,
if the defaulting firm was a competitor, or increasing it, if the relation was of a cooperative
nature. For instance, if a major manufacturer of PCs were to go out of business tomorrow,
this would inevitably have a material impact on the economic performance (i.e., wealth) of
other companies operating in the same industry sector. It would, on the one hand, lead to
a deterioration in the financial viability of most of the suppliers or service providers of the
PC manufacturer in question—including in particular its own work force!—but, on the other
hand, it would improve the situation for competing producers of PCs, in that they could profit
by taking over a share of the defaulted company’s market. When the default probability is
increased, this process is known as credit contagion and has been considered in, e.g., [16, 18]
while the incorporation of counter-party risk into a reduced form model was introduced in [9].
In what follows, we consider the dynamics of individual firm defaults and their influence on
loss distributions. More subtle effects such as credit-quality migration are, as yet, not taken
into account.

The importance of direct functional interactions in the analysis of risk is not restricted
to credit risk. In fact, the role of interactions is much more obvious in the context of
operational risk, where sequential, functionally induced failures of mutually dependent
processes constitute one of the main sources for operational risk. Indeed, an attempt to
explore the consequences of interactions for quantifying the capital buffer necessary to cover
operational risk [25] has provided major ingredients for the approach to credit-risk modelling
started by Neu and one of us [21].
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In the present paper, we provide an analytic solution to the dynamical description of
counter-party risk within a heterogeneous, functionally defined network of interacting firms
(to be referred to as economy in what follows), see e.g. [18], in the spirit of [21]. We
generalize the analysis of that study to capture effects of cooperative as well as competitive
business relations within the economy, and we solve the model for a wide degree of dilution
of the network of economic dependences in the sense that we assume each company in the net
to have business relations only with a (randomly chosen) subset of the full set of companies.
We are interested in quantifying the effect of these interactions from the perspective of a
lending bank which would be required to set aside a sufficient amount of capital to cover
losses incurred by defaults of its obligers. Another perspective might be that of a central bank,
which would base monetary policy decisions in part on their impact on expected default rates
at an economy-wide scale. The typical risk horizon in these contexts would be 1 year.

In the present investigation, we will always consider the case where the number of
interaction partners of each company is large, and for simplicity we shall restrict ourselves
here to the case where the graph defining economic connectivity is a Poisson degree distributed
Erdös-Rényi random graph [26]. More realistic connectivity distributions reflecting the
different connectivity patterns of large and small players in an economy, taking into account
small-world effects and fat-tailed degree distributions [27], can be handled by methods similar
to those used in the present investigation [28, 29], but will be studied in a separate paper.

As in [21], the model parameters are unconditional and conditional default probabilities,
which may be thought of as being obtained via a suitable rating procedure. One of the virtues
of the present analytic investigation is to highlight the fact that the collective behaviour of the
system, which ultimately determines the loss distribution on an economy-wide scale, is fairly
insensitive to detail. That is, it does not depend on getting individual dependences correct,
but only on the overall distribution of the unconditional and conditional default probabilities.
Our main result is to demonstrate that the effects of economic interactions—while relatively
weak in typical scenarios—are pronounced in situations of economic stress, and thus lead to
a substantial fattening of the tails of loss distributions even in large loan portfolios.

The remainder of the paper is organized as follows. In section 2, we define our model
and specify the stochastic setting for our analytic investigation. The relation between the
model parameters and conditional and unconditional default probabilities as used in [21] is
briefly reviewed to make the paper self-contained. Section 3 describes a heuristic solution for
the dynamical evolution of the fraction of defaulted companies over a risk horizon of 1 year,
starting from an overall healthy situation, a scenario appropriate for the analysis of credit risk.
A formal solution in terms of a generating function approach (GFA) [30], which provides a
full justification for the heuristic solution, is relegated to the appendix. Both solution methods
are based upon techniques developed in the statistical mechanical analysis of dilute neural
networks [31]. In section 4, we compute a phase diagram distinguishing regions in parameter
space in which economic interactions lead to a collective acceleration of the economy-wide
default rate in situations of economic stress from regions where such acceleration is impossible.
Distributions of annual fractions of defaulted companies as well as loss distributions, both
economy wide and for finite loan portfolios, are computed and compared with simulations.
Section 5 summarizes our findings and discusses their implications for the analysis of credit
risk.

2. Model definitions

In this section, we define a statistical model that attempts to capture the effects of counter-party
risk on credit contagion. In contrast to approaches based on microeconomics, and in keeping
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with the framework discussed in the introduction, we allow the firms’ wealth, macro-economic
factors and interactions between firms to all be described probabilistically. This is due to our
focus on the characteristic change in behaviour caused by examining interactions between
firms in the wider economy.

We analyse an economy which consists of N firms. The state of each firm i at a given
time t is described by its ‘wealth’ Wi,t , the difference between its assets and its liabilities.
Accordingly, a company defaults, if its wealth Wi,t falls below zero. We are interested in the
influence of economic partners on firms’ default probability.

For simplicity, we assume that within the risk horizon of 1 year node i experiences an
interaction-induced material change of its wealth only if one of its business partners, say j ,
defaults. In order to formalize this in a dynamical description, we introduce binary indicator
variable nj,t which indicates whether node j is solvent at time t (nj,t = 0) or has defaulted
(nj,t = 1).

The value of the ith node’s wealth at time t,Wi,t , is thus taken to be of the form

Wi,t = ϑi −
n∑

j=1

Jijnj,t − ηi,t . (1)

Here, Jij denotes the change in i’s wealth which would be induced by a default of node j .
One would have Jij > 0 if j is a cooperative partner of i, whereas Jij < 0 if j is a
competitor, while Jij = 0 if there is no direct influence of j on i. By ϑi we designate i’s initial
wealth at the beginning of the year, and ηi,t are (zero mean) random fluctuations caused by
both external macro-economic factors (an expanding/shrinking economy, an oil price spike,
market sentiment, etc) and firm-specific actions or events.

We take the initial state of the economy to be a set of solvent firms, ni,0 = 0 for all i (one
could view this as a definition), and say that a firm defaults at time t if Wi,t < 0. We define
our dynamics such that if a firm goes bankrupt it does not recover within a risk horizon of
1 year, so the bankrupt state is absorbing. Thus, the dynamics of the firms’ state is given by
the equation

ni,t+1 = ni,t + (1 − ni,t ) �


∑

j

Jijnj,t − ϑi + ηi,t


 (2)

where �(· · ·) is the Heaviside function. The time step in this dynamical rule will be taken to
represent 1 month.

Note that in equations (1), (2) we are not taking any systematic ‘endogeneous’ drift of
a company’s wealth into account, in the sense that at constant {nj,t } the wealth of company
i would just randomly fluctuate about ϑi − ∑n

j=1 Jijnj,t—a value determined solely by its
initial wealth ϑi and the solvency status of its economic partners. More realistically one could
include some endogeneous drift to capture the effect that a company makes losses or profits,
e.g. by making the ϑi in (1), (2) time dependent, ϑi → ϑi,t . A reasonable ansatz for their
dynamics would be ϑi,t+1 = qiϑi,t , with qi > 1 for a company making profits and qi < 1
for a company making losses. This modification can easily be handled by the methods we
use below to investigate the system. However, while requiring further assumptions (about the
qi-distribution), we find that it does not qualitatively alter our main findings, and we therefore
do not include this feature in the present study.

We choose ηi,t to be Gaussian distributed. Without loss of generality they can—by suitably
rescaling ϑi and Jij —be chosen to have unit variance. We follow widespread practice [3, 5]
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to account for common fluctuating macro-economic factors by choosing ηi,t to be correlated
for different i. This could be achieved by taking ηi,t to be of the form

ηi,t = σiξi,t +
K∑

k=1

βikYk,t (3)

with uncorrelated Gaussian unit-variance white noises ξi,t and {Yk,t }, the former describing
firm-specific wealth fluctuations, whereas the latter could account for the relative effects of
fluctuations common to industry sectors, regions or countries, with prefactors σi and βik

describing the relative importance of these fluctuations on i. In what follows, we restrict
ourselves to a minimal variant of this set-up by finally choosing

ηi,t = √
ρηt +

√
1 − ρξi,t . (4)

We simplify matters further by assuming that the common economic factor ηt is slow and take
it to be constant ηt = η0 within a risk horizon of 1 year. One-factor models of this type feature
in the regulatory framework laid out in the Basel II accord [2].

None of the simplifying assumptions are necessary for our analysis to go through; the
generating function formalism given in the appendix in particular can easily handle more
general cases. However, the simplified setting is sufficient to highlight the important effects
of interactions on credit risk, and it does lead to a greatly simplified macroscopic description
of the system, as we will see in section 3.

As for Jij , which describe the loss or gain of node i due to a default of node j , in the
present paper we will investigate them in a probabilistic setting. It is useful to disentangle the
presence or absence of an interaction from its strength by writing

Jij = cij J̃ ij (5)

where cij ∈ {0, 1} describes the absence or presence of a connection j → i, while J̃ ij

describes its magnitude, both of which are assumed to be fixed. It is reasonable to assume
that connectivity is a symmetric relation, cij = cji , whereas there is no reason to suppose
symmetry of the magnitudes of mutual influences. Considering the case of a small supplier
with one large company taking the majority of its orders, if the larger company defaults then
the small supplier may well go bust too. However, if the small supplier defaults then the large
company is less likely to suffer terminal financial distress, so in general J̃ ij �= J̃ j i .

Specifically, we assume a random connectivity pattern described by

P(cij ) = c

N
δcij ,1 +

(
1 − c

N

)
δcij ,0, i < j, cij = cji (6)

and we will be interested in the limit of a large economy (the thermodynamic limit), in which
the average connectivity c of each node is itself large, N → ∞, c → ∞. We will initially be
concerned with the extremely diluted regime, where c/N → 0, taking, e.g., c = O(log(N)).
These assumptions have important consequences for the structure of the graph defining the
connectivities, namely that each node feels the effects of a large number of other nodes (so
that limit theorems will allow us to describe the overall effects of interactions) and, for the
extremely diluted regime, that there are only a finite number of loops of finite length even in
the infinite economy limit. The graph of interactions between companies for finite N is just
an Erdös-Rényi random graph [26].

We take the magnitudes J̃ ij of the interactions to be fixed random quantities. To allow
the thermodynamic limit to be taken, the mean and fluctuations of J̃ ij must scale in a suitable
way with the connectivity c. Quite generally, we must have

J̃ ij = J0

c
+

J√
c
xij (7)
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in which xij are zero-mean unit-variance random variables. The scaling of mean and variance
of J̃ ij is given by the parameters J0 and J , respectively. If J0 > 0 there will be a net cooperative
tendency within the economy, which seems to be a reasonable assumption. Finally, we will
need to assume that all moments of xij are finite and we will choose xij to be independent in
pairs

xij = 0, x2
ij = 1, xij xji = α, xij xkl = 0 otherwise. (8)

The parameter α (−1 � α � 1) describes the degree of correlations between Jij and Jji .
Strictly symmetric interactions are obtained only for α = 1

At this point let us briefly recall that, after rescaling as described, the model parameters
ϑi and Jij have a clear meaning in terms of unconditional and conditional default probabilities
[21]. We denote by nt the values of all indicator variables in the economy at time t, assuming
ni,t = 0. Then by integrating over the unit-variance Gaussian ηi,t in (2) one obtains the
conditional probability for node i to default within a month given a configuration nt of
non-defaulted and defaulted firms in the economy at time t as

Prob(ni,t+1 = 1|nt ) = 



∑

j

Jijnj,t − ϑi




with 
(x) = 1
2 [1 + erf(x/

√
2)] being the cumulative normal distribution. Thus, the

unconditional probability pi of default of i within a month in an otherwise healthy economy
and the conditional probability pi|j for a default of i within a month, given j and only j has
defaulted before, are given by

pi = Prob(ni,t+1 = 1|{ni,t = 0}) = 
(−ϑi), (9)

pi|j = Prob(ni,t+1 = 1|nj,t = 1, {nk(�=j),t = 0}) = 
(Jij − ϑi). (10)

These relations may be inverted to express the model parameters in terms of conditional and
unconditional default probabilities—quantities that would be estimated in a rating procedure—
as

ϑi = −
−1(pi), Jij = 
−1(pi|j ) − 
−1(pi). (11)

While characterizing the default of companies is of interest, our primary concern is to
examine the distribution of losses accrued over our 1 year time frame, both in the economy at
large and in a portfolio made up of a finite number of firms within the economy. We assume
that the losses caused by default are independent of the month of default, and then examine
two different cases. The first simpler case is that the losses at firm i, given that firm i defaults,
are uncorrelated with any other variables. The second, perhaps more interesting case, is that
the losses at firm i are random but are correlated with the initial monetary reserves ϑi . The
intuitive reasons are that if a firm has more cash, then the default is less anticipated, and thus
will be less priced in by the market; or the firm has larger credit lines and so will default on a
larger amount; and finally the firm is likely to be larger, and hence cause a larger loss.

3. Heuristic solution

In the present section, we show that our model has a relatively simple solution that can
be obtained by qualitative probabilistic reasoning, appealing to statistical limit theorems.
This solution turns out to be exact, as we show using a more involved generating function
formalism in the appendix. Both types of argument have been developed in the analysis of
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the statistical mechanics of disordered systems, and in particular neural network models [31],
while for a more general introduction to emergent collective behaviour see, e.g., [32]. Recall
the microscopic dynamics as defined by (2). The complications are due to the interactions
between firms, namely that the state of a given firm i at time t depends on the state of the
neighbours of i for times t ′ < t which in turn depend on i at times t ′′ < t ′ < t . In general, this
feedback prohibits straightforward analysis; and indeed, it led Jarrow and Yu [9] to eliminate
this feedback explicitly by considering an economy of two types of firms: primary firms
whose default depended only on macro-economic factors and secondary firms whose default
depended on macro-economic factors and the default of primary firms. However, due to
the specific structure of our model we are able to push the analysis further. By definition,
the overall effect of interaction terms on company i at time t is given by the local field
hi,t = ∑

j Jijnj,t . From the statistics of the interactions Jij given by (6)–(8), we see that
each firm i is connected to, on average, c other firms. Since we consider the large c limit, this
means that we could evaluate the statistics of hi,t by appeal to the law of large numbers and
the central limit theorem if the contributions to hi,t were independent or at least sufficiently
weakly correlated.

At first sight, we cannot expect this condition to hold if we have some degree of symmetry
in the interactions, i.e. for α �= 0, even in the extremely diluted regime. Note that there are
two ways in which nj,t of the neighbours interacting with i may become correlated through
the dynamics: either they influence each other through firm i or not through firm i but through
some loop of interactions in the economy. In the extremely diluted regime, correlations
between the neighbours j of i cannot build up in finite time (within the risk horizon) via loops
not involving i, since due to the scaling almost all loops are very long. With symmetry in
the interactions, correlations between nj,t could in principle be induced by the dynamics of i.
However, as long as ni,t = 0, nj,t clearly cannot influence each other through site i, whereas
once ni,t = 1, then firm i is in the absorbing state, and correlations it induces on the dynamics
of its neighbours have become irrelevant for its own microscopic dynamics (2). Thus, limit
theorems can be used after all to solve the macroscopic dynamics of the system, despite a
possible symmetry in the interactions.

Returning to the dynamical evolution equation (2), we observe that the coupling of a node
to the economy is via the local field

hi,t =
∑

j

Jijnj,t = J0

c

∑
j

cij nj,t +
J√
c

∑
j

cij xijnj,t , (12)

which is a sum of random quantities (with randomness both due to the Gaussian fluctuating
forces ({ηi,t }, respectively {ξi,t }) and due to the heterogeneity of the environment). The first
contribution is a sum of terms of non-vanishing average. By the law of large numbers this
sum converges to the sum of averages in the large c limit,

h0
i,t ≡ J0

c

∑
j

cij nj,t → J0

c

∑
j

cij 〈nj,t 〉 
 J0

c

∑
j

cij 〈nj,t 〉 = J0
1

N

∑
j

〈nj,t 〉,

in which angled brackets 〈· · ·〉 denote an average over the fluctuating forces and the overbar
(· · ·) an average over Jij , i.e., cij and xij . An approximation is made by assuming negligible
correlations between cij and 〈nj,t 〉 induced by the heterogeneity of the interactions. The
second contribution to (12) is a sum of random variables with zero mean, which we have
argued are sufficiently weakly correlated for the central limit theorem to apply for describing
the statistics of their sum. Thus, the sum

δhi,t ≡ J√
c

∑
j

cij xijnj,t
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is a zero-mean Gaussian whose variance follows from

〈(δhi,t )2〉 = J 2

c

∑
jk

cij cikxij xik〈nj,tnk,t 〉 
 J 2

c

∑
jk

cij cikxij xik〈nj,tnk,t 〉

= J 2 1

N

∑
j

〈nj,t 〉.

An approximation based on assuming negligible correlations has been made as for the first
contributions. Thus, the local field hi,t is a Gaussian with mean h0

i,t and variance 〈(δhi,t )2〉
both scaling with the average fraction of defaulted nodes in the economy. By the law of large
numbers this average fraction will be typically realized in a large economy, i.e., we have

mt = 1

N

∑
j

nj,t → 1

N

∑
j

〈nj,t 〉 (13)

in the large N limit. The dynamics of the fraction of defaulted nodes then follows from (2),

mt+1 = 1

N

∑
i

ni,t+1 = mt +
1

N

∑
i

(1 − ni,t )� (hi,t − ϑi +
√

ρη0 +
√

1 − ρξi,t ), (14)

where the one-factor noise model (4) has been used.
The sum in (14) is evaluated as a sum of averages over joint ni,t , hi,t and ξi,t distribution

by the law of large numbers. We exploit the fact that ni,t , ξi,t and hi,t are uncorrelated. Noting
that the sum hi,t +

√
1 − ρξi,t is Gaussian with mean J0mt and variance 1 − ρ + J 2mt , and

taking into account that ni,t -averages depend on i through ϑi, 〈ni,t 〉 = 〈nt 〉(ϑi ), we find

mt+1 = mt +
1

N

∑
i

1 − 〈nt 〉(ϑi )

2

[
1 + erf

(
J0mt +

√
ρη0 − ϑi√

2(1 − ρ + J 2mt)

)]
.

This version can be understood as an average over the ϑ distribution

p(ϑ) = 1

N

∑
i

δ(ϑ − ϑi),

which maps onto a distribution of unconditional default probabilities as discussed above.
Denoting that average by 〈· · ·〉ϑ we finally get the following evolution equation for the
macroscopic fraction of defaulted companies in the economy:

mt+1 = mt +

〈
1 − 〈nt 〉(ϑ)

2

[
1 + erf

(
J0mt +

√
ρη0 − ϑ√

2(1 − ρ + J 2mt)

)]〉
ϑ

. (15)

We have thus an explicit dynamic equation for the macroscopic fraction of defaulted
nodes in the economy. It involves first propagating ϑ-dependent default probabilities via

〈nt+1〉(ϑ) = 〈nt 〉(ϑ) +
1 − 〈nt 〉(ϑ)

2

[
1 + erf

(
J0mt +

√
ρη0 − ϑ√

2(1 − ρ + J 2mt)

)]
, (16)

which depends only on mt , thereafter performing an integral over the ϑ distribution to obtain
the updated fraction mt+1 of defaulted nodes given in (15).

The heuristic solution of the macroscopic dynamics (15), (16) presented here is based on
independent assumptions which are not easily justified in a rigorous way via the probabilistic
reasoning presented above. However, the solution is supported in full detail by an exact
analysis based on generating functions presented in the appendix.
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Figure 1. Left: typical fraction of defaulted companies as a function of time for (J0, J ) =
(0, 0), (1, 0), (0, 1) and (1, 1) (bottom to top). Right: distribution of the fraction of defaulted
companies at t = 12 for (J0, J ) = (0, 0) (bottom) and (1, 1) (top). Smooth analytic curves are
overlaid with results of a simulation in which the distribution is obtained by computing the fraction
of defaulted companies for randomly sampled η0.

4. Results

In the present section, we explore the consequences of our theory. We studied the dynamics
and computed loss distributions for an economy in which the parameters ϑi determining
unconditional monthly default probabilities according to (9) are normally distributed with
mean ϑ0 = 3 and variance σ 2

ϑ = 0.01 so that typical monthly default probabilities are in
the 5 × 10−4 range. Except when stated otherwise we shall use ρ = 0.15 for the parameter
describing the relative importance of economy-wide fluctuations, a value that is considered to
be in an economically acceptable range.

In figure 1(a), we show the evolution of the typical fraction of defaulted firms over a risk
horizon of 12 months for various settings of the interaction parameters J0 and J ; the typical
fraction is computed by choosing the most-probable value η0 = 0 for the economy-wide
influence on the dynamics. Figure 1(b) shows the probability density of the end of year
fraction of defaulted firms driven by fluctuations in economic conditions. It is obvious that
interactions cause a significant fattening of the tail of the density at large values of this fraction,
which is a clear indication of the significance of counter-party risk in particular in situations
of economic stress.

In order to assess whether interactions can lead to a collective acceleration of the rate of
defaults, we look at the discrete second derivatives

�t = mt+1 + mt−1 − 2mt

which are always negative for the non-interacting system and maximal at t = 1, irrespectively
of η0. Interactions can lead to a collective acceleration of the rate of defaults signified by the
possibility that the �t may become positive in unfavourable economic conditions. We define
the region in parameter space in which collective acceleration of default rates can occur by the
condition that

Prob{�t > 0} > 0 (17)

for some t, with 1 < t < 11. The concavity of the error function for positive arguments entails
that effects of collective acceleration are always strongest at t = 1. Evaluating this condition
for various values of the parameter ρ describing the coupling to the overall economy, we
get lines shown in the phase diagram in figure 2 (left). Note that the influence of ρ is very
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Figure 2. Left: phase boundaries separating regions without collective acceleration of default
rates from regions where acceleration occurs, for ρ = 0.15, 0.3 and 0.8 (bottom to top). Right:
distribution of discrete second derivative �1 = m2 + m0 − 2m1 just within the phase with
accelerating default rates for (J0, J ) = (0.5, 0.5) (right).

weak in interesting region of low ρ values. Note also that �1 values are typically positive
but very small in the region near the phase boundaries shown, as illustrated in figure 2 (right)
where we exhibit the distribution of discrete second derivatives at t = 1, just inside the phase
where acceleration of default rates is observed. The tail of negative �1 is found to extend to
significantly larger values.

The quantity of central importance from the point of view of credit-risk analysis is of
course the distribution of losses. Let �i denote the loss that would be incurred by a default of
node i. Then, the loss per node for a given state η0 of the economy is

L(η0) = 1

N

∑
i

ni12�i (18)

where �i is randomly sampled from the loss distribution for node i. We assume that �i are
independent of the stochastic evolution. In the large system limit, the loss per node at given
value of η0 describing the influence of the overall economy is a non-fluctuating quantity, as it
is itself an (empirical) average taken over an (infinitely) large system,

L(η0) = lim
N→∞

1

N

∑
i

n12(ϑi)�(ϑi) =
∫

dϑ p(ϑ)〈n12〉(ϑ)�(ϑ), (19)

by the law of large numbers, where � = �(ϑ) is the mean of the loss distribution for a node. If
loss distributions were identical for each node, with means independent of default probabilities
�(ϑ) = �0, then the distribution of losses driven by the fluctuations of the economic stresses
would simply replicate the distribution of the fraction of defaulted firms.

The situation is different if loss distributions are correlated with default probabilities.
As an example, we consider the case where average losses are inversely proportional to the
unconditional default probabilities pd(ϑi) = pi introduced in (9):

�(ϑ) = �0

ε + pd(ϑ)
(20)

with a parameter ε introduced as a regularizer to prevent divergence as pd → 0. That is,
the contribution to the total losses incurred by defaulting firms with different unconditional
default probabilities is approximately uniform over the default probabilities. In our model, we
have

pd(ϑ) = 1
2 [1 − erf(ϑ/

√
2)]. (21)



Effects of economic interactions on credit risk 2241

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

−20  0  20  40  60  80  100  120  140  160  180

P
(L

)

L

Figure 3. Loss-distribution per node for the infinite system with �(ϑ) = 1/(ε + pd(ϑ)) at
ε = 0.005. As before, smooth analytic curves are overlaid with simulation results. Lower curve:
non-interacting system, upper curve: interacting system with (J0, J ) = (1, 1).

Figure 3 shows loss distributions for such a situation. The analytic curves are computed by
noting that the losses per node are monotonically increasing functions of η0 which is itself
N (0, 1). Integrated loss distributions are thus simply obtained using error functions

Prob[L(η0) � L] = 1
2 [1 + erf(η0(L)/

√
2)]

where η0(L) is the η0-value giving rise to loss L per node. The probability density function is
obtained via a single numerical differentiation.

It would be of some interest to know whether finite sample fluctuations could possibly
upset the picture seen so far. To study this issue, we look at the losses per node of a finite
sample randomly drawn from the nodes of a large economy,

LM(η0) = 1

M

M∑
i=1

n12(ϑi)�(ϑi). (22)

Writing this as

LM(η0) = 1

M

M∑
i=1

〈〈n12〉(ϑ)�(ϑ)〉ϑ +
1

M

M∑
i=1

(〈n12〉(ϑi )�(ϑi) − 〈〈n12〉(ϑ)�(ϑ)〉ϑ
)

+
1

M

M∑
i=1

(
n12(ϑi)�(ϑi) − 〈n12〉(ϑi )�(ϑi)

)
= L(η0) + L2(η0, {ϑi}) + L3(η0, {ϑi}, {φi,t }) (23)

we see that it has three components. The first is simply the expectation value describing the
loss per node at given η0 in an infinite system, the third, L3, has zero mean and is expected to be
Gaussian at large M, with variance scaling as M−1 describing the noise-induced fluctuations
about the average for a given collection of {ϑi}, while the second, L2—also a zero-mean
Gaussian of variance scaling as M−1 at large M—describes the finite sample fluctuations of
this average. Since the collection of {ϑi} is fixed, these Gaussians are correlated for different
η0. While an analytic evaluation of the loss distribution may still be feasible in principle, it
would become very involved in practice.
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Figure 4. Left: loss distribution per node in the large system limit with �(ϑ) = 1/(ε + pd(ϑ)) at
ε = 0.005, and for a finite sample of M = 100 companies randomly taken from the ensemble. For
the finite sample, individual loss distributions are taken to be flat in the range [0, 2�(ϑ)]. The two
lower curves correspond to (finite and infinite) non-interacting systems, the two upper curves to
(finite and infinite) interacting systems with (J0, J ) = (1, 1); for further discussion, see the text.
Right: the same analytic curves, overlaid with a simulation result for the finite sample.

An approximation to the finite-size computation is obtained by assuming that losses per
node at given η0 are normally distributed about their infinite system η0-dependent mean with
(combining L2 and L3) variance (also η0 dependent)

σ 2
M = M−1

(〈〈n12〉(ϑ)�2(ϑ)〉ϑ − 〈〈n12(ϑ)〉�(ϑ)〉2
ϑ

)
, (24)

which is an annealed approximation which ignores that the parameters of the individual loss
distributions of the nodes in question remain fixed. The results of an evaluation along this line
are shown in figure 4, using the scaling (20) of average losses used above; the approximation
suggests that finite-size fluctuations give rise to fatter tails in the loss distributions, though the
effect is negligible in the interacting system except at the extreme end of the loss distribution and
small but a bit more pronounced in the non-interacting system. A comparison with a simulation
shows that the effects of fluctuations are slightly underestimated in our approximation. Note,
however, that loan portfolios of typical banks usually contain orders of magnitude more debtors
than the M = 100 considered in the present example.

Let us finally look at the so-called value at risk in terms of which the capital buffer that
banks are required to hold to cover risk is often expressed. It is defined as

VaRq = (Qq[L] − 〈L〉) e−rT (25)

in which Qq[L] is the q-quantile of the loss distribution at time T, i.e. the loss that is not
exceeded with probability q

Prob(L � Qq[L]) = q,

while 〈L〉 is the average loss and r denotes a risk-free interest rate. To highlight the effects
introduced by economic interactions we take the ratio of the value at risk computed for
economies with and without functional economic interactions VaR/VaR0, both computed at
confidence level q = 0.999 as required by the Basel II regulations [2]. Taking this ratio also
eliminates the dependence on the interest rate r.

In figure 5, we display this ratio alongside with analogous ratios of average losses 〈L〉/〈L〉0

for comparison.
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Figure 5. Ratio of value at risk for systems with and without functional interaction as a function of
the strength of the interaction (upper curves). The analogous ratio for average losses is also shown
in each case (lower curves). The curves shown in the three figures are evaluated along straight

lines in the J0 − J plane, and the parameter R measures a distance from the origin R =
√
J 2

0 + J 2.
The three figures correspond to the lines J0 = 0 (upper left), J = 0 (upper right) and J0/J = 1
(lower).

As perhaps may be anticipated in view of results displayed in figures 3 and 4, the value at
risk is significantly more sensitive to functional interactions in an economy than the average
losses are. This is understandable, as VaR probes the tails of loss distributions, while average
losses will be determined mostly by typical results.

For the results displayed in figure 5, unconditional default probabilities were not adjusted
with the strength of the interactions so as to keep the average annual default probability
constant. In figure 6, therefore, we take this extra step, displaying an analogous ratio of
the value at risk of interacting and non-interacting economies, where now unconditional
default probabilities in the interacting system are adjusted in such a way that the average
(interaction-renormalized) default probability stays constant—at the level chosen for the non-
interacting system. To keep matters simple, a homogeneous portfolio, with firm-independent
unconditional default probabilities and firm-independent average losses, was chosen. Clearly,
the interaction-induced enhancement of the value at risk is rather close to the corresponding
enhancement computed without adjustment of the unconditional default probabilities.

To summarize, the capital buffer that banks are required to hold according to the Basel II
regulations [2] to cover credit risk is significantly underestimated when interaction effects in
an economy are not taken into account. It is important to note that this is true already in the
regime in which interactions are too weak to cause an overall acceleration of default rates, as
can be seen by comparing the phase diagram in figure 2 (left) with results for the value at risk
displayed in figures 5 and 6.
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probabilities in the interacting system adjusted as a function of the strength R of the interaction to
keep the annual average default probability constant (in the present case at a value close to 3%.).
As in figure 5, the VaR ratio is computed at q = 0.999.

5. Conclusion

In conclusion, we have studied the effects of economic interactions on credit risks. Though
non-equilibrium initial conditions and the fact that the credit-risk problem has an absorbing
state would at first sight appear to complicate the analysis, we found, quite to our own surprise,
that in particular the presence of the absorbing state simplifies the analysis considerably, as
it removes the non-Markovian effects in the macroscopic dynamics that would otherwise
be present in systems with some degree of symmetry in the interactions. While the limit
of extreme dilution simplified the reasoning within the heuristic solution, we saw in the
generating function analysis that the assumption of extreme dilution could be dispensed with.
So although the rather heavy machinery of non-equilibrium disordered systems theory is
required to rigorously treat the model (due to asymmetry in the inter-firm dependences and
the initial conditions), the resulting effective single-firm process is remarkably simple. This
has obvious practical benefits in terms of computational efficiency.

We have seen that the effects of economic interactions are relatively weak in typical
economic scenarios, but they are pronounced in situations of economic stress, and thus lead
to a substantial fattening of the tails of loss distributions in large loan portfolios. This leads
to significant increases in the value at risk, i.e. the capital that must be held as a loss buffer,
when compared to the non-interacting theory. Importantly, this conclusion remains valid
even in the case where there is no overall acceleration in default rates, cf figure 2(left) and
figures 5 and 6.

It is worth paraphrasing these last observations as they address a point of key importance.
While credit-risk models that do not take direct economic interactions into account can provide
a very reasonable fit, when calibrated on historical data which reflect normal economic
conditions, their predictions would be entirely inadequate when it comes to estimating default
rates and losses in situations of significant economic stress.

Note that the model presented here is suitable for detailed and comprehensive stress
testing, as explicitly demanded within the regulatory framework of the Basel II accord [2].



Effects of economic interactions on credit risk 2245

The issue of stress testing was addressed in greater detail when the present model was first
introduced in [21].

The patterns of economic interactions studied in the present paper are described by an
Erdös-Rényi random graph. The large connectivity limit considered in the present investigation
further entails that there is no pronounced heterogeneity in the sets of economic partners of
any one given node. Connectivity distributions other than Poisson can, however, be handled
by suitably adapting the generating function approach explained in the appendix along the
lines developed in [29] and will be investigated in a separate publication [33]. In terms of
model fitting there appear to be a vast number of free parameters in terms of the interactions
{Jij } between firms. However, it is important to realize that to understand the macroscopic
behaviour, here only their low-order statistics are relevant, reducing the number of parameters
that determine collective behaviour in the one-factor model to just 6 (!), namely the three
parameters c, J0 and J characterizing the low-order statistics of economic interactions, the
parameter ρ describing the relative importance of the macro-economy for the dynamics and
two parameters ϑ0 and σϑ characterizing the low-order statistics of unconditional default
probabilities.

In the present investigation, we restricted ourselves to analysing the effects of interactions
on default dynamics and, via default rates, on loss distributions. More subtle effects such as
credit-quality migration are, as yet, not taken into account, but could be modelled along similar
lines using the dynamics of interacting multi-state indicator variables. Further assumptions
concerning details of such models would be required, however, and the full complexity of
non-Markovian dynamics would resurface in such an analysis.
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Appendix. Generating function analysis

In this appendix, we describe the generating function approach (GFA) to solve our model,
giving full justification to the arguments used in section 3. The reasoning is relatively standard;
we include it here to make the paper reasonably self-contained.

A.1. The generating function for correlation functions

First, we introduce the generating function at fixed value of the macro-economic force η0,

Z[ψ |η0] =
〈

exp

(
−i

12∑
t=0

∑
i

ψi,tni,t

)〉
, (A.1)

where the angled brackets denote averages over the microscopic dynamics (2) of ni , i.e.

Z[ψ |η0] =
∑

n0,...,n12

P [n0, . . . ,n12] exp

(
−i

12∑
t=0

∑
i

ψi,tni,t

)
, (A.2)

with P [n0, . . . ,n12] denoting the probability of a sequence of configurations of the entire set
of interacting firms over the risk period of 12 months. The generating function can be used to
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compute expectation values and correlation functions via differentiations with respect to the
source fields ψi,t ,

〈ni,t 〉 = i
∂Z[ψ |η0]

∂ψi,t

∣∣∣∣
ψ≡0

, 〈ni,snj,t 〉 = i2
∂2Z[ψ |η0]

∂ψi,s∂ψj,t

∣∣∣∣
ψ≡0

.

It is expected that correlation functions averaged over the randomness in the couplings Jij are
dominated by typical realizations of the disorder, hence to describe typical results an average
of the generating function over the disorder,

Z[ψ |η0] =
∫ ∏

i<j

dP(Jij , Jji)Z[ψ |η0], (A.3)

is computed.
To proceed, the path-probability P [n0, . . . ,n12] at given η0 is expressed in terms of

transition probabilities of the Markovian dynamics,

P [n0, . . . ,n12] = P(n0)

11∏
t=0

P(nt+1|nt ),

where

P(nt+1|nt ) =
∏

i

∫
dξi,t√

2π
exp

(
−1

2

∑
i

ξ 2
i,t

)
δni,t+1,fi,t

(A.4)

with

fi,t = ni,t + (1 − ni,t )�


∑

j

Jijnj,t +
√

1 − ρξi,t +
√

ρη0 − ϑi


 . (A.5)

The ξi,t integrations appearing in the transition probabilities and the average over the Jij

distribution are facilitated by utilizing δ-distributions to ‘extract’ ξi,t and Jij from the Heaviside
function in fi,t , using

1 =
∫

dui,t δ


ui,t −

∑
j

Jijnj,t −
√

1 − ρξi,t




=
∫

dui,t dûi,t

2π
exp


−iûi,t


ui,t −

∑
j

Jijnj,t −
√

1 − ρξi,t




 .

This gives

P(nt+1|nt ) =
∫ ∏

i

dui,t dûi,t

2π

× exp


∑

i


−1 − ρ

2
û2

i,t − iûi,t


ui,t −

∑
j

Jijnj,t






∏

i

δni,t+1,fi,t
(A.6)

with now

fi,t = ni,t + (1 − ni,t )�(ui,t +
√

ρη0 − ϑi). (A.7)
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Inserting into the generating function, we get

Z[ψ |η0] =
∑

n0,...,n12

P(n0)

∫ ∏
i,t

dui,t dûi,t

2π
exp



∑
i,t


1 − ρ

2
(̂iûi,t )

2

− iûi,t


ui,t −

∑
j

Jijnj,t


− iψi,tni,t





∏
i,t

δni,t+1,fi,t
.

The disorder average affects Jij ; it factorizes in the pairs (i, j) and involves the term

∏
(i,j)

Dij =
∏
i<j

exp

{
i
∑

t

(ûi,t Jij nj,t + ûj,t Jjini,t )

}c,x

.

Here, the superscripts c and x indicate averages over cij and xij in Jij according to the statistics
(6)–(8). Performing the cij average, one gets

∏
(i,j)

Dij =
∏
i<j


1 +

c

N

[
exp

{(
J0

c
+

J√
c
xij

)∑
t

iûi,tnj,t

+

(
J0

c
+

J√
c
xji

)∑
t

iûj,tni,t

}
− 1

]x

 .

The exponential is expanded using c � 1. Using (8), keeping dominant terms and re-
exponentiating the result, one obtains

∏
(i,j)

Dij 
 exp

{
N

[
J0

∑
t

ktmt +
J 2

2

∑
s,t

[Qstqst + αGstGts]

]}

which depends only on the macro-variables

kt = 1

N

∑
i

iûi,t , mt = 1

N

∑
i

ni,t (A.8)

Qst = 1

N

∑
i

iûi,s iûi,t , qst = 1

N

∑
i

ni,sni,t , Gst = 1

N

∑
i

iûi,sni,t . (A.9)

We thus have

Z[ψ |η0] =
∑

n0,...,n12

P(n0)

∫ ∏
i,t

dui,t dûi,t

2π
exp

{∑
i,t

[
1 − ρ

2
(̂iui,t )

2 − iûi,tui,t − iψi,tni,t

]

+ N

[
J0

∑
t

ktmt +
J 2

2

∑
s,t

[Qstqst + αGstGts]

]}∏
i,t

δni,t+1,fi,t
.

Site factorization in Z[ψ |η0] is achieved as usual by writing it as an integral over the macro-
variables, using δ-function identities of the form

1 =
∫

d(Nmt)δ

(
Nmt −

∑
j

nj,t

)
=
∫

dmt dm̂t

2π/N
exp


im̂t


Nmt −

∑
j

nj,t
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and analogous ones for kt , qst ,Qst and Gst to compute densities of state. This results in the
following compact expression for the average generating function:

Z[ψ |η0] =
∫

D{· · ·} exp{N [
 + � + �]} (A.10)

in which D{· · ·} stands for differentials of all order parameters introduced in (A.8), (A.9) and
their conjugate (hatted) parameters introduced via Fourier representations of δ-functions. The
functions 
, � and � appearing in (A.10) are given by


 = J0

∑
t

ktmt +
J 2

2

∑
s,t

[Qstqst + αGstGts] (A.11)

� = i
∑

t

[m̂tmt + k̂t kt ] + i
∑
st

[q̂st qst + q̂stQst + ĜstGst ] (A.12)

� = 1

N

∑
i

log
∑
{nt }

∫ ∏
t

dût dut

2π
exp

(
−S − i

∑
t

ψi,tnt

)∏
t

δnt+1,fi,t
(A.13)

with S denoting the ‘dynamic action’

S =
∑

t

[
−1 − ρ

2
(iût )

2 + iûtut + im̂tnt + ik̂t iût

]
+ i
∑
st

[q̂stnsnt + Q̂st iûs iût + Ĝst iûsnt ].

(A.14)

The third contribution, �, in (A.10) describes an ensemble of independent single site dynamical
problems. Thus, to leading order in N we have written our generating function in terms of an
integral which may be computed via a saddle-point argument.

A.2. Saddle point problem

In the saddle point, variation of our observables gives

im̂t = −J0kt ik̂t = −J0mt

iq̂st = −J 2

2
Qst iQ̂st = −J 2

2
qst iĜst = −αJ 2Gts

(A.15)

mt = 1

N

∑
i

〈nt 〉(i) kt = 1

N

∑
i

〈iût 〉(i) (A.16)

qst = 1

N

∑
i

〈nsnt 〉(i) Qst = 1

N

∑
i

〈iûs iût 〉(i) (A.17)

Gst = 1

N

∑
i

〈iûsnt 〉(i) (A.18)

with 〈· · ·〉(i) denoting averages evaluated wrt effective single site dynamics at i:

〈· · ·〉(i) =
∑

{nt }
∫ ∏

t
dût dut

2π
(· · ·) exp(−S)

∏
t δnt+1,fi,t∑

{nt }
∫ ∏

t
dût dut

2π
exp(−S)

∏
t δnt+1,fi,t

. (A.19)

In the usual manner [30], averages involving conjugate fields iût describe response functions,
i.e. perturbations of expectation values wrt external fields, so that averages involving nothing
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but conjugate variables correspond to perturbations of a constant and will therefore vanish.
Moreover, causality implies that Gst , which describes the response of the average fraction of
defaulted companies to at time t to perturbations at time s, must vanish for s � t . At the
saddle point, therefore, we have kt ≡ 0, im̂t ≡ 0, Qst ≡ 0, iq̂st ≡ 0 and Gst = 0 for s � t ,
thus iĜst = 0 for s � t .

With these observations, we find that the functions 
 and � appearing in the average
generating function (A.10) are zero at the saddle point,


 = 0, � = 0, (A.20)

and the dynamic action S of (A.14) simplifies to

S = −1

2

∑
st

[(1 − ρ)δst + J 2qst ]iûs iût +
∑

t

iût

(
ut − J0mt − αJ 2

∑
s<t

Gstns

)
. (A.21)

With this form of the dynamic action, the system dynamics is described by an ensemble-
independent effective single-node stochastic process of the form

nt+1 = fϑt ≡ nt + (1 − nt )�

(
J0mt + αJ 2

∑
s<t

Gstns +
√

ρη0 − ϑ + φt

)
, (A.22)

the details of which are self-consistently specified by macroscopic properties of the system via
the saddle-point equations, in that each single site process (i) depends on the dynamics of the
macroscopic fraction of defaulted nodes mt , (ii) the original Gaussian white noise is replaced
by a coloured Gaussian noise φt with correlations depending on qst

〈φt 〉 = 0, 〈φsφt 〉 = (1 − ρ)δst + J 2qst ,

and (iii) a memory term appears in the dynamics, if there is some degree of symmetry in the
interactions, i.e. if α �= 0.

The only site dependence in the averages 〈· · ·〉(i) appearing the fixed point
equations (A.16)–(A.18) comes from the ϑi dependence in the update rules fi,t . By the law
of large numbers, the sums can therefore be evaluated as an average over the ϑ-distribution in
the large N limit

1

N

∑
i

〈· · ·〉(i) −→
∫

dϑp(ϑ)〈· · ·〉(ϑ) ≡ 〈〈· · ·〉(ϑ)〉ϑ ,

in which 〈· · ·〉(ϑ) has the same structure as (A.19), except for the fact that the dynamical
constraints fi,t of (A.7) are replaced by fϑt of (A.22). The saddle-point equations thus take
the form

mt = 〈〈nt 〉(ϑ)〉ϑ , qst = 〈〈nsnt 〉(ϑ)

〉
ϑ

, Gst = 〈〈iûsnt 〉(ϑ)〉ϑ .

A.3. Simplification of the single node equation

The single-node equation (A.22) is complicated by the fact that it is non-Markovian, containing
a correlation function coupled to the noise term qst and a retarded self-interaction Gst . This
latter term encodes the physics that a firms performance at time t is influence by its neighbours,
themselves dependent on the firm itself at times s < t , via loops in our network of corporate
interactions—in particular short loops arising through correlated bi-directional interactions.
However, as we argued in section 3, if a firm is bankrupt at time s then the performance of
partner firms at time t is irrelevant, since the firm will still be bankrupt. In the alternative case,
when the firm is solvent at time t, it is clear from the definitions in the dynamics that it must
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have been solvent at time s < t and thus cannot have affected its partner terms at that time.
Thus, the retarded self-interaction is zero.

There is a second simplifying feature in (A.22) related to the statistics of the coloured
noise within our system. On multiplying (A.22) on both sides by ns with s < t and first
averaging over the noise φt = (φ1, φ2, . . . , φt ), one finds 〈nsnt 〉(ϑ) = 〈nmin(s,t)〉(ϑ) at fixed ϑ ,
since if ns = 1, then nt = 1 due to the absorbing nature of the defaulted state, whereas if
ns = 0, so is the product nsnt , irrespectively of nt . As a consequence we have qst = mmin(s,t),
and thus

〈φsφt 〉 = (1 − ρ)δst + J 2ms, s � t. (A.23)

Having seen that the memory term in the dynamics vanishes, it transpires that only the equal-
time version of the noise correlation 〈φtφt 〉 = 1 − ρ + J 2mt is required to propagate the order
parameter mt . One needs

mt+1 = 〈〈nt+1〉(ϑ)〉ϑ = mt + 〈〈(1 − nt )�(J0mt +
√

ρη0 − ϑ + φt)〉(ϑ)〉ϑ .

In order to evaluate the average 〈· · ·〉(ϑ) over the correlated noise in the second term, convert
the probability density p(φt ) = p(φ1, φ2, . . . , φt ) into p(nt , φt )—the joint probability density
that the node variable takes value nt (nt = 0 or nt = 1) and the noise variable at time t is in
an infinitesimal interval around φt ; formally, one can write this as

p(nt , φt ) =
∫

dφt−1p(φt )δnt ,nt (ϑ,φt−1) =
∫

dφt−1p(φt−1, φt )δnt ,nt (ϑ,φt−1)

where nt (ϑ, φt−1) is the value of nt for the specific ϑ under consideration and a given noise
history φt−1. Writing the joint probability in terms of a conditional as

p(nt , φt ) = p(nt |φt)p(φt ),

and noting that p(nt |φt) must be independent of the conditioning by causality and finally using

p(nt ) = 〈nt 〉(ϑ)δnt ,1 + (1 − 〈nt 〉(ϑ))δnt ,0

for a given ϑ , one finally obtains

mt+1 = 〈〈nt+1〉(ϑ)〉ϑ = mt +

〈
1 − 〈nt 〉(ϑ)

2

[
1 + erf

(
J0mt +

√
ρη0 − ϑ√

2(1 − ρ + J 2mt)

)]〉
ϑ

(A.24)

which agrees with the result of our heuristic reasoning in section 3. Note that the condition
c/N → 0 is not needed in the present argument.
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